最小路径和
https://leetcode-cn.com/problems/minimum-path-sum/
动态规划
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
| func minPathSum(grid [][]int) int { m, n := len(grid), len(grid[0]) dp := make([][]int, m) for i := range dp { dp[i] = make([]int, n) }
dp[0][0] = grid[0][0] for i := 1; i < m; i++ { dp[i][0] = dp[i-1][0] + grid[i][0] } for j := 1; j < n; j++ { dp[0][j] = dp[0][j-1] + grid[0][j] }
for i := 1; i < m; i++ { for j := 1; j < n; j++ { dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] } } return dp[m-1][n-1] }
func min(values ...int) int { res := values[0] for _, v := range values { if v < res { res = v } } return res }
|
空间压缩
很容易看出来,得到初始值后可以逐行更新,每一行的结果只依赖于上一行以及自己的前一个结果,可以按从上到下、从左到右的顺序遍历,只需要 1 维的 DP 数组。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| func minPathSum(grid [][]int) int { m, n := len(grid), len(grid[0]) dp := make([]int, m) dp[0] = grid[0][0] for i := 1; i < m; i++ { dp[i] = dp[i-1] + grid[i][0] }
for j := 1; j < n; j++ { dp[0] = grid[0][j] + dp[0] for i := 1; i < m; i++ { dp[i] = min(dp[i-1], dp[i]) + grid[i][j] } } return dp[m-1] }
func min(values ...int) int { res := values[0] for _, v := range values { if v < res { res = v } } return res }
|